
A DESCRIPTION OF THE ADAGE PROJECT

J. ALEX STARK

OUTLINE

This is a short description of the Adage project. It describes: (1) the motivation
behind the project; (2) application areas for which it might be used; (3) scenar-
ios in which it might be invoked; (4) the general design strategy; and (5) its
main features. This introduction is quite terse, and there are no pictures: the
project website provides example drawings, executive summaries, and much
more information besides.

CONTENTS

Outline 1
1. Concept 2
1.1. Unity and diversity 2
1.2. An integrated system 2
1.3. Extensibility and flexibility 3
2. Applications 3
2.1. Plotting and charting 3
2.2. Getting connected 4
2.3. Representing reality 4
3. Means 4
3.1. Building blocks 4
3.2. Language and data 5
3.3. Engine 5

For further information email info AT mdag DOT org .
1



ADAGE DESCRIPTION 2

1. CONCEPT

The vision behind the Adage project is to provide two complementary sys-
tems. The first is a stand-alone interactive drawing package. The second is a
library-style package that can be used by programs to draw graphical output.
The project is organised around a central engine with a custom-made data
manipulation language. This language is designed for modularity and exten-
sibility, and the majority of project, at least in term of code quantity, consists
of extension modules and scripts.

Note that this document is written in the present and past tenses, even when refer-
ring to things not yet created: it is documentation in advance.

1.1. Unity and diversity. There are many open-source and research programs
being distributed today that produce graphical output. Such programs typi-
cally use similar drawing elements. For instance, a program that plots an au-
dio signal and a program for drawing flow diagrams both use mainly lines,
points and text. The needs of a program that analyses DNA and plots trees
of descent are much like those of a program that plots the exchange rates be-
tween currencies.

In view of this, it is surprising that a truly flexible and reusable drawing
engine has yet to be created. Presently, programmers primarily concerned
with other tasks have to write their own output generators. This is wasted
effort: a solution off the shelf would be much better. An important aim of the
Adage project is to meet this need.

1.2. An integrated system. The interactive program can be used not only to
create and edit drawings, but also to design macros, scripts and drawing tem-
plates. These can in turn be used to build extension libraries, or to serve as
templates for master programs to use. Consider the following scenario:

A master data analysis program includes commands that are
used to plot a graph. The Adage engine, which is linked as a
slave library, provides this ability. A “smart export” function
is used to save the data and graph details with tagging infor-
mation. The user launches the interactive Adage program sep-
arately and adds annotations, creating an enhanced plot. Then
a batch file is written that invokes the (first) data analysis pro-
gram on multiple data sets, such as monthly results. New data
is exported for each. The stand-alone Adage program is in-
voked on each results file, generating enhanced graphs that in-
clude the additional annotations.

This is not an exceptional example. However, no current drawing package
supports it. Adage only requires that the master program can export data
with consistent tagging information, and the rest is made straightforward by
the basic design of the Adage language.



ADAGE DESCRIPTION 3

1.3. Extensibility and flexibility. Many of the most successful software projects
have been based around a community of developers. Examples are Gimp, Perl
and Latex. A characteristic of these is that scripts, modules and plug-ins build
on a well-designed core. The Adage package makes even greater use of ex-
tensibility. It has a small core that is not specific to the task of drawing. The
vast majority of function is derived from this by extension. This is done not
only to facilitate a community effort, but also so that the engine can be used in
varying scenarios.

The flexibility of the Adage system is supported by a characteristic of its
drawing files, non-GUI commands, the data structure for drawings, and the
code that describes drawing elements. All four have the same format, differ-
ently expressed. For instance, when Adage saves a drawing file it basically
writes a set of text commands that can be invoked to recreate the drawing.
A new drawing element can be created within the interactive program for a
library using a similar process. The first step is to draw an example using
a small set of parameters such as points and lengths. The second step is to
group the drawing elements. Adage automatically identifies the parameters
on which the group depends. The third step is to export the group of elements
as a function.

2. APPLICATIONS

The potential range of drawing applications was an initial motivation for
the Adage project, and surveying applications became a key part of early
work on it. It has proved particularly important to keep in mind the diver-
sity and similarity between applications when making basic design decisions.
Here the applications have been organised loosely in three groups: plots and
charts, drawings with nodes and connections, and more intricate drawings
that represent real objects.

2.1. Plotting and charting. Drawings are often made to illustrate data from
two kinds of source, in one case from measurements, in the other from a math-
ematical function or computer program. In some ways this distinction is not
important to us, especially since artificial measured data is often generated by
computer simulation. In both cases a sequence or set of data values is to be
represented graphically. However, there are a number of different genres of
drawing, and we can crudely categorise them as either plots or charts.

In a plot, values are drawn against others, the most common being the sim-
ple 2-dimensional graph. Styles of plot include connected lines, points, im-
pulses and filled areas. More elaborate features include statistical error bars.
Graphs also comprise axes, grid lines, tic marks, legends and labels.

In a chart, values are displayed in a more disconnected fashion are used
more for collections than sequences of data. The types of display are more
varied than with plots. They include pie charts and histograms, and are often
seen in newspapers and reports.



ADAGE DESCRIPTION 4

2.2. Getting connected. A surprisingly wide range of drawings are in essence
composed of connected nodes. In an organisation chart, a node is a person, job
function or organisation subgroup. The arrangement and connections show
the hierarchy, reporting structure, or other interactions.

Organisations and their activities are often represented using connected
nodes. Project plans, time-lines and dependencies, business processes, report-
ing and communications structures all take this form.

Many diagrams are composed of functional blocks with inputs and outputs.
Examples are flowcharts, system diagrams and process illustrations. Schemat-
ics for electrical, electronic, plumbing, pneumatic and hydraulic systems all
have broadly this form.

Software design makes increasing use of connected drawings. And tree
structures also come under this category, as do network diagrams and topolo-
gies.

2.3. Representing reality. Many of the kinds of drawing described above rep-
resent reality in some way. However, a separate category can be usefully
drawn for the more elaborate task of drafting. It includes engineering drawing
and architectural drawing. The distinguishing characteristic is that, although
diagrammatic, there is a direct correspondence between elements on the page
and physical reality. Distance on the page corresponds to distance in space.

Any attempt to develop a package that can handle drawings of this com-
plexity must be considered a long-term project. Nevertheless, the Adage sys-
tem is designed with this future potential in mind. In the shorter term, the
project does aim to provide libraries for simple drafting.

3. MEANS

Some mention was made previously of design and implementation. We
now focus attention on some details.

3.1. Building blocks. The basic building blocks of Adage drawings are lines,
points, areas, and text. Lines have a variety of patterns and widths; areas can
be filled with colour and patterns; and there is a set of points, some of which
are small versions of drawing elements such as circles and squares. Some
output devices support slightly more complex elements such as circles and
rectangles.

The basic elements are built into more complex elements in a hierarchical
fashion. A rectangle can be defined as a closed polygon which in turn can be
broken up into a set of line segments. An architectural element for a washing
machine might comprise polygons and circle arcs. A drawing is composed of
elements realized on a composition frame which is rendered on a page. Mod-
ification and transformation operations are provided. These include rotation,
scaling and translation.

Function specific to interaction is provided. Examples include snapping
points to a grid and restricting vector angles.



ADAGE DESCRIPTION 5

3.2. Language and data. The Adage system is built upon the POStiche type
system and MDAG data manipulation system. POStiche is also known as
the Protean Object System. Within it data objects have both a major type and
a minor substype. An example might be a rectangle expressed as the centre
point, width and height. The major type is the rectangle, and the specific set
of data fields is one subtype. Another subtype might be the bottom-left and
top-right corners. The object system is protean in that the same information
can be represented in many different ways. POStiche has rules that determine
how objects are transformed, combined and broken up.

The MDAG (M directed acyclic graph) system is in large part an implemen-
tation of the POStiche system. Drawing elements are defined in a hierarchy.
Suppose, for instance that a rectangle is defined using the polar coordinates
of its centre point and the lengths of its width and height. Four raw values
are combined with length and angle units to create one angle and three length
objects. The angle and one length object are combined into the polar subtype
of the coordinate major type. This and the other two lengths combine to make
the rectangle. Within the MDAG system, at the level of drawing definition, a
node is used for each object, unit choice, or raw data value. Directed edges
(node links) indicate the dependencies and combinations. This hierarchical
framework of POStiche objects is the basis for the MDAG system.

The MDAG system has some sophisticated capabilities for handling trans-
formations, and for optimising them. For instance, all lengths are converted
to universal units. We might start with some lengths specified in centimeters
and others in millimeters, and these might be scaled then converted to inches.
The optimisation engine is reliable in collecting transformations together.

3.3. Engine. The base layer of the Adage implementation is the MDAG sys-
tem in combination with the Adage language. This language is used across
the whole MDAG system for a variety of purposes. First, POStiche types and
their transformation operations are defined using it. Second, drawings are
specified as MDAG nodes and connections. Third, macros, drawing elements
and transformations are defined as MDAG nodes and connections. Hence, a
drawing is realized by recursive breaking down until a network of irreducible
nodes is reached. Fourth, interactive operation is implemented as a special
set of transformations and irreducible nodes. Fifth, file formats are ordinary
commands that rebuild the network of nodes at the uppermost level. Sixth,
batch scripts and master programs using Adage as a slave library utilize spe-
cial invocation commands that are realized as nodes.

Thus the main engine is an implementation of the Adage language that ma-
nipulates MDAG networks and POStiche objects. All drawing elements are
provided in libraries that build on this foundation. Libraries at the lower level
define basic drawing elements. At the top level are elements that are specific
to applications. Specialized nodes provide external interaction. Through these
a library of Adage functions provide for GUI operation and use as a slave li-
brary.


